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Full Wave Network Representation
for Rectangular, Circular, and Elliptical

to Elliptical Waveguide Junctions
Benito Gimeno and Marco Guglielmi

Abstract—In this paper, two contributions to the study of the
elliptical waveguides are given: an efficient technique to obtain
the modal spectrum for elliptical waveguides and the analysis
of the junctions between rectangular, circular, or elliptical to
elliptical waveguides. In addition to theoretical results, experi-
mental results are also presented finding good agreement between
prediction and measurement.

I. INTRODUCTION

ELLIPTICAL waveguides have already been studied in the
past and a number of contributions can be found in the

technical literature investigating their modal structure [1]–[12],
or simple step junctions [13]. In this paper, the authors give
two contributions to the study of elliptical waveguides. First,
the authors develop a computationally efficient approach to
obtain the modal spectrum in elliptical waveguide regions to
avoid the slow convergence of the Mathieu functions. Second,
the authors analyze the junctions between rectangular, circular,
or elliptical and elliptical waveguide.

The technique used for the modal analysis is based on the
transformation of the Helmholtz equation in elliptical coor-
dinates into an equivalent linear matrix eigenvalue problem
by means of the Galerkin method [14]–[16]. The second
part of the paper is devoted to the study of junctions from
rectangular, circular, or elliptical to elliptical waveguides
[17]. The convergence of the method is analyzed, showing
good behavior. Finally, theoretical results are compared with
measurements finding a good agreement.

II. M ODAL ANALYSIS OF ELLIPTICAL WAVEGUIDES

The analytical expressions of the vector mode functions
for an elliptical waveguide can be found in the technical
literature in terms of the Mathieu functions [18]. However,
the computation of these functions using standard routines can
result in long central processing unit (CPU) time. Therefore, in
this paper the authors have chosen an alternative procedure in
order to obtain codes which are computationally more efficient.

From a mathematical point of view, an ellipse is char-
acterized by the major and minor semi-axis, denoted as
and , respectively. Other relevant parameters are the focal
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semi-distance given by , and the eccentricity
of the ellipse given by . The elliptical coordinate
system is defined as the intersection of two families of con-
focal ellipses and confocal hyperbolas [19]. Each intersection
point corresponds to a point defined by the coordinates

, , where is the radial
elliptical coordinate, and is the angular elliptical coordinate.
The coordinate varies from 0 to , and the coordinate

varies from 0 to arccosh . Finally, and
represent the unitary vectors associated with the coordinates

and , respectively.
The authors start our derivation by writing the Helmholtz

equation in elliptical coordinates

(1)

where is the transverse wavenumber of theth mode, and
the potential represents the axial electric or magnetic
component for the th TM or TE modes, respectively. The
longitudinal propagation constant is given by

(2)

In the classical modal analysis, the method of separation of
variables is used thus leading to Mathieu functions. To increase
the computational efficiency, the authors first rewrite (1) as an
eigenvalue equation

(3)

where is a linear differential operator. Next, the authors
write in the form

(4)

being unknown expansion coefficients, and a
set of basis functions which directly satisfy the Dirichlet
or Neumann boundary conditions, for TM or TE modes,
respectively. Next, following the Galerkin method, the authors
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(a) (b)

(c)

Fig. 1. Geometries of the junctions studied in this paper: (a) rectangular to elliptical junction, (b) circular to elliptical junction, and (c) elliptical to
elliptical junction.

insert (4) into (3), obtaining

(5)

so that, multiplying by and integrating both sides of
(5), the authors finally write

(6)

where the symbol indicates

(7)

Equation (1) has therefore successfully been transformed into
the linear matrix eigenvalue system in (6). Now, using the
original notation of [14], the authors rewrite (6) as follows

(8)

where the elements of the matrices, , and are given
by

(9)

The linear eigenvalue problem obtained can be easily solved
with standard mathematical subroutines for matrix operations,
obtaining the transverse wavenumbers and the expansion

coefficients of each mode. Finally, the vector mode

functions obtained are normalized according to

(10)

where is the Dirac delta function, and is the
waveguide cross section. The derivation up to this point is
general. The application to TM and TE polarizations requires
some further analytical developments.

A. TM Modes

There are two families of TM modes, denoted as TM
and TM , corresponding to the even and odd solutions of
the Mathieu functions [18], respectively. The basis functions
chosen are

(11)

(12)

where the index corresponds to the pairs of integers ().
The axial electric component then becomes

(13)

(14)
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where is the total number of terms. The specific
choice of the analytical form in (11) and (12) has been dictated
by the Dirichlet boundary conditions, namely

(15)

The elements of the matrices and are easily obtained,
resulting in the very simple expressions

(16)

(17)

where if , if , and the expressions
for , , , and are given in Appendix I.

The authors can now write the analytical expressions of the
scalar potentials and in the form

(18)

(19)

where and , the normalization factors according
to the normalization condition in (10), are given by

(20)

(21)

so that the authors can finally write for the TM vector mode
functions the following expressions

(22)

where is the transverse nabla operator. Finally, the modal
admittance of the TM modes is given by

(23)

where is the propagation constant given in (2).

(a)

(b)

Fig. 2. Junction from a rectangular, circular, or elliptical waveguide [denoted
as region (1)] to a elliptical waveguide [denoted as region (2)]. The multimode
equivalent network representation of the junction is also shown.

B. TE Modes

The same procedure has been applied for TE modes, so the
authors omit the details. The basis functions chosen are

(24)

(25)

where the index corresponds to the pairs of integers ().
The axial magnetic component becomes

is not considered (26)

(27)

The specific choice of the analytical form in (24) and (25) has
been imposed by the Neumann boundary conditions, namely

(28)
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Fig. 3. Convergency of the propagation constant�m of the mth elliptical mode as a function of the number of basis functions used to describe each
mode Nr = Ns. (a = 23:5 mm, e = 0:8837, Frequency= 5 GHz).

Fig. 4. Convergency of theY (2; 2)
m;m element as a function of the number of terms summed in (40) for an elliptical iris in a circular waveguide

(frequency = 8.7 GHz).

The elements of the matrices and result in

(29)

(30)

where the expressions for and are given in the
Appendix.

The scalar potentials and are written as follows

(31)

(32)
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Fig. 5. Convergency of the magnitude of the reflection coefficient versus the number of modes included in the global network for an elliptical iris in
a circular waveguide (frequency= 8.7 GHz).

Fig. 6. Comparison between simulation and measurements for an elliptical iris in a circular waveguide.

where and , the normalization factors according
to the normalization condition (10), are given by

(33)

(34)

so that the authors can finally write for the TE vector mode
functions the following expressions

(35)

Finally, the modal admittance of the TE modes is given by

(36)

where is again the propagation constant given in (2).
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(a)

(b)

Fig. 7. Comparison between simulation and measurements for a junction between two elliptical waveguides: (a) magnitude of the transmission coefficient
and (b) phase of the transmission coefficient.

III. JUNCTIONS BETWEEN A LARGE WAVEGUIDE

AND A SMALLER ELLIPTICAL WAVEGUIDE

Once the modes of the elliptical waveguides have been
obtained, the next contribution is the analysis of the discon-
tinuities presented in Fig. 1. To proceed, the authors need to
define two reference planes denoted asand , as shown
in Fig. 2. The plane is at the junction between the regions
(1) and (2), while the plane is located at a distance in
the region (1). The authors can then write the mathematical
equivalent of the network representation between the reference
planes and , represented as a multiport in Fig. 2, in the
form

(37)

where and are the modal voltages and currents, re-
spectively. Following [17], the authors can now write directly
these expressions for the admittance matrix elements,

(38)

cosec (39)

(40)

The problem at hand has therefore been reduced to the
evaluation of the inner products between the modes.
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(a)

(b)

Fig. 8. (a) Comparison between simulation and measurements for a circular cavity fed by rectangular waveguides. An elliptical iris was inserted in the
middle of the cavity. (b) Sketch of the cavity structure.

The inner products involved in (39) and (40) [identified as
] are surface integrals which have to be evaluated

in the cross section of the ellipse [see (10)]. These surface
integrals can be reduced to a simple contour integral [20],
obtaining, if and refer to TM modes

(41)

if refers to TM and refers to TE modes

(42)

if and refer to TE modes

(43)

if refers to TE and refers to TM modes

(44)

where the scalar potentials and correspond to the
rectangular or circular modes in the region (1) [18].

IV. A CCURACY AND CONVERGENCE

PROPERTIES OF THEMODAL EXPANSIONS

The authors first present in Table I the cutoff wavelengths
of several modes for an elliptical waveguide with eccentricity

in comparison with [10]. The agreement is very
good even for the higher order modes. The computation time
for these typical cases is only 167 s on a IBM RISC-6000
workstation ( basis functions were used), while
the solution obtained with a program based on a standard
package to calculate the Mathieu functions needed 303 s.

Next the authors show in Fig. 3 the convergence of the
propagation constant in (2) of several modes as a function of
the number of basis functions used to describe each
mode ( ). The authors can see that the convergence
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TABLE I
CUTOFF WAVELENGTHS (CM) OF AN ELLIPSE WITH 2a = 2 CM, e = 0:5

Order Mode [10] This method Rel. error
1 TEe 3.39447796 3.39447781 0:4� 10

�5

5 TEo 1.90795125 1.90795097 1:5� 10
�5

10 TEo 1.39790776 1.39790732 3:1� 10
�5

20 TEe 0.91607169 0.91607066 3:1� 10
�5

30 TMo 0.77560113 0.77560109 1:1� 10
�4

50 TMo 0.59214061 0.5921451 1:7� 10
�5

70 TMe 0.49402711 0.49402571 2:8� 10
�4

90 TMo 0.43415539 0.43415506 7:6� 10
�5

100 TEe 0.41616560 0.41616329 5:6� 10
�4

of each mode depends on the order of the mode. For instance,
to obtain the 50th mode with the accuracy showed in Table
I, the authors need to consider at least basis
functions.

V. CASCADING JUNCTIONS

More complicated structures can be easily analyzed by
connecting to each other several rectangular, circular and
elliptical waveguide lengths. Once the admittance matrices of
all of the elements of the structure are evaluated, they can
be easily connected to form a global multimode equivalent
network. From the network, a band diagonal linear system
is obtained, which has to be inverted in order to find the
reflection and transmission coefficients at the input and output
ports. This inversion is performed by means of an adequate
inversion algorithm for band diagonal systems, resulting in a
very fast code implementation.

In order to verify the accuracy of the codes developed,
several elliptical irises in rectangular and circular waveguides
were manufactured with a tolerance of0.05 mm. The first

example consists of an elliptical iris in a circular waveguide
with radius mm. The dimensions of the iris were

mm, mm, and the thickness was 0.95 mm.
The iris was tilted of an angle , and was also shifted
with respect to the center of the feeding circular waveguide
to the point ( mm, ) [see Fig. 1(b)]. In Fig. 4,
the authors present the convergence of the element as
a function of the number of terms summed in (40). As the
authors can see, 200 terms are enough to reach the region of
convergence. The convergence of the reflection coefficient is
plotted in Fig. 5 versus the number of modes in the global
network. As the authors can see, 40 modes are sufficient to
obtain an accurate solution. In Fig. 6, the authors compare
our theoretical results with the measurements finding good
agreement. To perform all calculations the authors used

basis functions to describe each elliptical mode, 200
terms in (40), 40 modes in the global network and 100 points
in frequency. The computation time for the results plotted in
Fig. 6 was 2.7 s per point on a IBM RISC-6000 workstation.

The junction between two elliptical guides was also ana-
lyzed in this paper [see Fig. 1(c)]. To perform this analysis,
instead of applying the method described in Section III, the
authors connected the elliptical waveguides through a section
of circular waveguide of length zero. In Fig. 7, the authors
compare the magnitude and the phase of the transmission
coefficient of our theoretical results with the measurements
for two centered elliptical irises joined directly showing good
agreement. The irises were inserted in WR-187 rectangular
waveguide, being their dimensions mm,
mm (denoted as E1) and , mm (denoted as
E2), respectively. The thickness was 2.0 mm for both of them.
The radius of the zero length circular waveguide used in the
simulation was mm.

(45)

(46)

(47)

(48)

if

if or
if
in other case

if and
if or

in other case

if
if

in other case

if
if

in other case

if
if

in other case
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Finally, the authors constructed a circular cavity fed from
two rectangular waveguides through two rectangular irises. In
the middle of the cavity the authors inserted an elliptical iris
(denoted as E) with dimensions mm, mm,

, , and rotated of . The dimension
of the rectangular irises were mm, mm
for the first iris (denoted as I1), and mm,
mm (denoted as I2) for the second one. The radius of the
circular waveguide was mm. The magnitude of the
transmission coefficient is plotted in Fig. 8, showing also good
agreement.

VI. CONCLUSIONS

An accurate multimode equivalent network representation
for the junctions between rectangular, circular or elliptical
to elliptical waveguides has been developed. The multimode
equivalent network representation is formulated in terms of an
admittance coupling matrix. Furthermore, a computationally
efficient modal expansion for the elliptical waveguide is ob-
tained in terms of a linear matrix eigenvalue problem. The
convergence of the method is good. Comparisons between
theoretical and experimental results fully validate the network
representations developed.

APPENDIX

DEFINITION OF , , , , , AND

The expressions for , , , , , and
are given by (45)–(48), as shown at the bottom of the previous
page.
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